The common invariant subspace problem and Tarskiâs theorem
نویسندگان
چکیده
منابع مشابه
The common invariant subspace problem and Tarski’s theorem
This article presents a computable criterion for the existence of a common invariant subspace of n×n complex matrices A1, . . . , As of a fixed dimension 1 ≤ d ≤ n. The approach taken in the paper is model-theoretic. Namely, the criterion is based on a constructive proof of the renowned Tarski’s theorem on quantifier elimination in the theory ACF of algebraically closed fields. This means that ...
متن کاملAn Invariant Subspace Theorem
for every rational function ƒ with poles off K. In this note it is shown that any operator for which the spectrum is a spectral set has a nontrivial invariant subspace. In [6] von Neumann introduced the notion of spectral set and showed that if T has II T\\ = 1 then the closed unit disc, D"~, is a spectral set for T. For this reason any operator whose spectrum is a spectral set is called a von ...
متن کاملThe Invariant Subspace Problem
Notes for my lectures in the PSU Analysis Seminar during the winter and spring terms 2013-14, with special emphasis on the 1972 results of Victor Lomonosov.
متن کاملThe Invariant Subspace Problem
The notion of an invariant subspace is fundamental to the subject of operator theory. Given a linear operator T on a Banach space X, a closed subspace M of X is said to be a non-trivial invariant subspace for T if T (M) ⊆M and M 6= {0}, X. This generalizes the idea of eigenspaces of n×n matrices. A famous unsolved problem, called the “invariant subspace problem,” asks whether every bounded line...
متن کاملThe Invariant Subspace Problem
Heeft elke begrensde lineaire operator, werkend op een Hilbert ruimte, een niet-triviale invariante deelruimte? Het antwoord is positief voor zowel eindig-dimensionale ruimtes als voor niet-separabele ruimtes. Het onopgeloste probleem voor het geval daar tussenin, dus voor separabele Hilbert ruimtes staat bekend als het invariante deelruimte probleem. Professor B.S. Yadav van de Indian Society ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Linear Algebra
سال: 2017
ISSN: 1081-3810
DOI: 10.13001/ela.2017.1783